3D Printing Functional Materials & Devices

Wed. October 31| 1:00 PM - 1:45 PM | Engineering HQ Booth 232

Conference: ESC Minneapolis 2018

Track: Keynotes

Format: 45-Minute

Pass Type: Conference Pass (Paid), Expo Pass (Free)

The ability to three-dimensionally interweave biological and functional materials could enable the creation of devices possessing unique and compelling geometries, properties, and functionalities. Indeed, interfacing active devices with biology in 3D could impact a variety of fields, including regenerative bioelectronics, smart prosthetics, biomedical devices, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins, to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature sensitive. This renders most biological platforms incompatible with the fabrication and materials processing methods that have been developed and optimized for functional electronics, which are typically planar, rigid, and brittle. A number of strategies have been developed to overcome these dichotomies. Our approach is to use extrusion-based multi-material 3D printing, which is an additive manufacturing technology that offers freeform, autonomous fabrication. This approach addresses the dichotomies presented above by using 3D printing and imaging for personalized, multifunctional device architectures; employing 'nano-inks' as an enabling route for introducing diverse material functionality; and 3D printing a range of functional inks to enable the interweaving of a diverse palette of materials, from biological to electronic. 3D printing is a multiscale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This blending of 3D printing, functional materials, and 'living' platforms may enable next-generation 3D printed devices, from a one-pot printer.


Michael McAlpine

Michael McAlpine

Benjamin Mayhugh Associate Professor of Mechanical Engineering

University of Minnesota

Role: Keynote